

Available online at http://cerdika.publikasiindonesia.id/index.php/cerdika/index

BLOODSTAIN PATTERN ANALYSIS – A SYSTEMATIC REVIEW

I Gusti Lanang Bumi Agung

Pemda Klungkung, UPTD Puskesmas Dawan 2 Klungkung Bali Email : kingbumiagung@gmail.com

Abstrak

Received: 01-04-20223	Pendahuluan: Analisis pola noda darah (BPA) adalah alat
Revised : 17-04-2023	penting dalam investigasi forensik, terutama dalam kasus-
Accepted: 25-04-2023	kasus yang melibatkan kejahatan kekerasan seperti
	pembunuhan, penyerangan, dan penyerangan seksual.
	Analisis bercak darah dapat memberikan informasi berharga
	tentang lokasi dan pergerakan korban dan pelaku, jenis
	senjata yang digunakan, serta jumlah dan arah pukulan atau
	tembakan. Kurangnya landasan matematis yang obyektif
	adalah masalah kritis dalam skenario di mana kualitas bukti
	dapat sangat mempengaruhi persidangan dan kehidupan
	orang-orang yang terlibat dalam persidangan tersebut.
	Tinjauan sistematis memberikan metode yang ketat dan
	transparan untuk mengevaluasi bukti ilmiah, dan dapat
	membantu mengidentifikasi kekuatan dan kelemahan
	metodologi tertentu. Tujuan Penelitian ini adalah untuk
	menganalisis Pola Noda Darah . Metode: Untuk memastikan
	pengambilan komprehensif penelitian yang relevan, kami
	akan mencari basis data utama berikut: PubMed dan
	ScienceDirect melalui 1000 untuk rekan artikel ulasan
	(dalam semua bahasa) bukti yang terkait dengan analisis
	pola noda daran. Diskusi: Iinjauan sistematis ini
	BDA Makalah partama mempalkanalkan kangan dagan BDA
	dan nanggunaan prinsin trigonometri untuk manantukan
	sudut benturan noda darah Makalah kedua
	mempresentasikan temuan eksperimental tentang
	penggungan trigonometri dalam BPA dan mengidentifikasi
	keterbatasannya dalam menentukan ketinggian darah yang
	disemprotkan ke atas. Makalah ketiga meneliti analisis noda
	darah melingkar dan menemukan bahwa kelompok mereka
	danat memberikan informasi tidak langsung tentang jarak
	tumbukan ke dinding dan daerah asal Makalah keempat
	memperkenalkan penggunaan model virtual untuk BPA dan
	menemukan bahwa lintasan garis lurus dapat digunakan
	untuk memperkirakan daerah asal dengan akurasi tinggi.
	Kesimpulan: Makalah ini menyoroti kompleksitas BPA dan
	pentingnya menggunakan kombinasi metode untuk
	menginterpretasikan pola noda darah secara akurat.
	Sangatlah penting untuk mempertimbangkan keterbatasan
	masing-masing metode dan menggabungkannya untuk

mendapatkan gambaran yang lebih lengkap tentang peristiwa yang terjadi di TKP. Penelitian lebih lanjut diperlukan untuk menyempurnakan dan meningkatkan metode yang digunakan dalam BPA dan mengembangkan pendekatan baru untuk menganalisis pola noda darah

Kata kunci: analisis pola noda darah; matematika; investigasi forensik

Abstract

Introduction: Bloodstain pattern analysis (BPA) is a crucial tool in forensic investigations, particularly in cases that involve violent crimes such as homicides, assaults, and sexual assaults. The analysis of bloodstains can provide valuable information about the location and movement of the victim and perpetrator(s), the type of weapon used, and the number and direction of the blows or shots. The lack of an objective mathematical foundation is a critical issue in a scenario where the quality of evidences can strongly affect a court trial and the life of people involved in that trial. Systematic reviews provide a rigorous and transparent method for evaluating scientific evidence, and can help to identify strengths and weaknesses of a given methodology.Methods: To ensure comprehensive retrieval of relevant research we will search the following key databases: PubMed and ScienceDirect through 1000 for peer reviewed articles (in all languages) evidence related to bloodstain pattern analysis.Discussions: This systematic review summarizes four papers that discuss different aspects of BPA. The first paper introduced the basic concepts of BPA and the use of trigonometric principles to determine the impact angle of bloodstains. The second paper presented experimental findings on the use of trigonometry in BPA and identified its limitations in determining the height of blood sprayed upwards. The third paper examined the analysis of circular bloodstains and found that their clusters can provide indirect information on impact-to-wall distance and area of origin. The fourth paper introduced the use of virtual models for BPA and found that straight-line trajectories can be used to estimate the area of origin with high accuracy.Conclusions: These papers highlight the complexity of BPA and the importance of using a combination of methods to interpret bloodstain patterns accurately. It is essential to consider the limitations of each method and to use them in combination to obtain a more complete picture of the events that occurred at a crime scene. Further research is needed to refine and improve the methods used in BPA and to develop new approaches to analyzing bloodstain patterns

*Keyword*s: bloodstain pattern analysis; mathematics; forensic investigations

*Correspondence Author: Email:

INTRODUCTION

Bloodstain pattern analysis (BPA) is a crucial tool in forensic investigations, particularly in cases that involve violent crimes such as homicides, assaults, and sexual assaults (Jauhani, 2019). BPA involves the systematic examination of bloodstains found at a crime scene in order to gain information about the nature and sequence of events that occurred during the crime (Jauhani, 2020). The analysis of bloodstains can provide valuable information about the location and movement of the victim and perpetrator(s), the type of weapon used, and the number and direction of the blows or shots. Mathematics, particularly trigonometry, plays a significant role in the analysis of bloodstains. The use of trigonometry allows for the determination of important factors such as the angle and velocity of bloodstains, which can be used to reconstruct the events of a crime (Wijayatni, 2010).

BPA plays a crucial role among the investigation activities. In fact, it studies the distribution, size and shape of bloodstains left at crime scenes in order to allow investigators to gain information useful for the reconstruction of bloody events and answer 45 questions such as: where did the blood come from?, what caused the wounds? and from what direction was the victim wounded? 1 Given the importance of trigonometry in BPA, there is growing interest in the development and validation of systematic review methodologies to evaluate the effectiveness and reliability of mathematical models and techniques used in bloodstain pattern analysis. The lack of an objective mathematical foundation is a critical issue in a scenario where the quality of evidences can strongly affect a court trial and the life of people involved in that trial. Systematic reviews provide a rigorous and transparent method for evaluating scientific evidence, and can help to identify strengths and weaknesses of a given methodology.

This systematic review aims to critically assess the current state of trigonometry in BPA by evaluating the effectiveness and reliability of mathematical models and techniques used in bloodstain pattern analysis. By conducting a comprehensive search of the literature and using rigorous inclusion and exclusion criteria, this review aims to provide an unbiased assessment of the state of trigonometry in BPA. Ultimately, this review aims to identify areas where further research and development is needed to improve the effectiveness and reliability of mathematical models and techniques used in bloodstain pattern analysis, and to provide guidance on best practices for the use of trigonometry in BPA. The purpose of this research is to analyze the pattern of blood stains(<u>Anggereini, 2008</u>).

RESEARCH METHOD

We searched PubMed and Science Direct databases from inception through 1000 for peer reviewed articles (in all languages) evidence related to bloodstain pattern analysis. We used the phrases "PubMed (((Math OR Mathematics OR Trigonometry) AND (Bloodstain OR Bloodstains) AND (Forensic OR Forensics)))"; Science Direct with the keyword (Math OR Mathematics OR Trigonometry AND Bloodstain OR Bloodstains AND Forensic OR Forensics). Reference list from articles identified by the search, as well as key review articles conducted by author and we did not impose any language or other restrictions on the beginning of searches. Study selection

Our search generated a list of abstracts. Any uncertainty on the eligibility of the studies that was based on tittle and abstract made the reviewers read full paper. The study flow diagram was shown in **Flowchart 1.**

To be considered for inclusion, studies must explicitly define and describe the mathematical models and techniques used in bloodstain pattern analysis to provide guidance on best practices in forensics investigation. Study design and setting reported in **Table 1.**

	Inclusion Criteria	Exclusion Criteria		
Types of studies	Controlled clinical trials (randomized control trials), observational studies, meta- analysis, case report	 Did not explain the mathematical models and techniques used in bloodstain pattern analysis review High bias studies Expert opinions or commentary paper 		
Types of Participants	Forensic investigations using mathematical models in bloodstain pattern analysis	Forensic investigations that not using mathematical models in bloodstain pattern analysis		

Table 1. Article Inclusion and Exclusion Criter	ia
---	----

Assessment of study quality

All authors participated in summarizing and systematically assessing the evidence through the use of standard abstraction forms. The team will test the screening and abstraction forms on multiple articles before beginning the abstraction and review process. Screening and data collection forms may undergo revisions by the team. The result are presented in the evidence tables (**Table 2.**).

Data Extraction

Data extracted from the identified publication included: study design, mathematical models, results, conclusions, and comments. We used a table where each piece of information was written descriptively (**Table 2**).

RESULTS AND DISCUSSION

A. Research Results

329 studies were identified in our study. The flowchart literature through the assessment process for the update of this review is shown in **Flowchart 1.**

Flowchart 1. Study flow diagram in this review

Bloodstain Pattern Analysis – A Systematic Review

No	Author	Locations	Methods	Discussions	Conclusions
1.	Giovanni, et	School of	Experimenta	• This	The main
	al., 2016^2	Science and	l study	paper	goal of this
		Technology,		explains	research is to
		Nottingham		the basic	introduce a
		Trent University,		concepts	very first
		Clifton Lane,		of BPA	formal
		Nottingham,		describe	representation
		United Kingdom		d by	of one of the
				starting	most useful
				from the	and applied
				aforeme	forensic
				ntioned	discipline:
				physical	BPA. This
				features	new
				of blood,	modelling of
				a BPA	DFA WIII Start
				analyst	a liew
				datarmin	in forensics
				determin o tho	involving the
				impact	application of
				angle of	different
				blood on	optimisation
				a at	approaches
				surface	such as
				by	evolutionary
				evaluatin	algorithms,
				g the	clustering
				shape of	techniques
				the	and so on, to
				blood	325 compute
				spatter	bloodstain
				stain	patterns and
				through	their regions
				trigonom	of origin in a
				etric	precise and
				principle	objective
				s. In	way. In the
				detail,	tuture, we
				the	expect that
				analyst	other
				has to	researchers
				locate	will re_ne our
				each	proposal in
				spatter	order to make
				and	RDA more
				ite	ord more fact
				Its	and more fast

Table 2. Characteristics and outcomes of the included studied

Bloodstain Pattern Analysis – A Systematic Review

			length L	and precise.
			(major	r
			diameter	
) and	
			width W	
			(minor	
			diameter	
) using a	
			scale a	
			scale, a	
			ruler or	
			calipers	
			then, he	
			or she	
			compute	
			s the	
			on ala of	
			angle of	
			impact α	
			by using	
			the	
			followin	
			σ	
			5 formula:	
			ioiiiiuia.	
			$\alpha = \omega$	
			arcsin $\frac{w}{r}$	
			and then	
			looling	
			looking	
			for area	
			of	
			converge	
			nce and	
			region of	
			origin	
		•	In the	
			next	
			section,	
			this	
			paper	
			explains	
			the PDA	
			ule DFA	
			optimiza	
			tion	
			problem	
			that can	
			be	
			solved	
			by pains	
			by using	
			a well-	
			known	
			optimisa	
			tion	
			method	
			such ac	
	1		such as	

Bloodstain Pattern Analysis – A Systematic Review

				genetic algorith ms	
2	Makovicky et al., 2013 ³	Parkland College, USA	Experimenta I study	This paper conducts experim ents to test the concept of trigonom etry in BPA with criminal acts, namely with compare d measure ments of the lengths of trajector y of impact and the height of the blood sprayed upwards from a distance of 1, 3, 5 and 10 meters. The experim ent was based on two main presump tions Best was the knowled ge of the	has a large and important role in bloodstain analysis. In spite of the lack of total accuracy, this paper recommend using this method widely and more ohen for investigation and verification of individual acts in criminal and forensic practice.

Bloodstain Pattern Analysis – A Systematic Review

			value of	
			the	
			distance	
			and the	
			angle of	
			impact	
			of the	
			bloodstai	
			n the	
			socond	
			second,	
			the	
			ability of	
			the	
			blood to	
			reach a	
			certain	
			boight	
			neight	
			and the	
			angle of	
			its	
			impact.	
		•	The	
			rogulto	
			indianta	
			Indicate	
			that the	
			method	
			for these	
			requirem	
			ents	
			differs	
			from the	
			mool	
			leal	
			values,	
			while	
			increasin	
			g the	
			measure	
			ment	
			with the	
			indicated	
			mulcated	
			spot of	
			the shot.	
			Aside	
			from the	
			unique	
			values	
			which	
			which	
			wcit	
			calculate	
			d, other	
			results	
			of the	

Bloodstain Pattern Analysis – A Systematic Review

					impact of the distance of drops	
					ot bloodstai n were consider ed of	
					lower value, and the values	
					concerni ng the height of the	
					stains after the shot higher	
					than real	
3.	Kettner, et al., 2014 ⁴	Department of Experimental	Experimenta l study	•	values This paper	The findings suggest that
		ForensicMedicin e, Institute of Forensic Medicine, Saarland University Medical School, Homburg/Saar, Germany			studies the patterns formed by circular bloodstai ns from drops of blood that hit adjacent surfaces at a 90- degree angle are thought to provide indicatio ns of the height of the impact.	patterns of circular bloodstains cannot be used as direct indicators of impact height, but combined analysis of their clusters may lead to indirect determination of impact-to- wall distance and area of origin.

Bloodstain Pattern Analysis – A Systematic Review

	blunt	
	force	
	everted	
	excited	
	against a	
	pool of	
	blood,	
	which	
	was used	
	was used	
	as a	
	surrogat	
	e for a	
	bleeding	
	wound	
	was	
	was	
	carried	
	out for	
	five	
	different	
	impact_	
	to mpact-	
	to-wall	
	distances	
	. The	
	blunt	
	force	
	consiste	
	consiste	
	d of a	
	hammer	
	head that	
	was	
	dronned	
	from	
	Irom a	
	height of	
	1.5 m.	
	• The	
	natterns	
	patterni	
	containi	
	ng	
	bloodstai	
	ns	
	produce	
	d by the	
	u by the	
	droplets	
	were	
	analysed	
	bv	
	measurin	
	g the	
	cırcular	
	bloodstai	
	ns	
	within	
	the	
	the	

Bloodstain Pattern Analysis – A Systematic Review

		patterns.	
		All the	
	-	An the	
		experim	
		ents	
		showed	
		that	
		that	
		there	
		were	
		two	
		1. stimet	
		distinct	
		patterns	
		or	
		clusters	
		clusters	
		of	
		circular	
		bloodstai	
		ne that	
		iis uiat	
		occurred	
		at	
		different	
		hoights	
		neights	
		above	
		the	
		imnact	
		inpact	
		site that	
		were	
		projecte	
		d in a	
		u III a	
		garland	
		or	
		crown-	
		liko	
		пке	
		form of	
		а	
		"Worthi	
		notor	
		ngion	
		splash"	
		after	
		impact	
		mpact.	
	•	The	
		findings	
		siloopet	
		that	
		inat	
		patterns	
		of	
		circular	
		bloodstai	
		ns	
		cannot	
		he wast	
		be used	
		as direct	
		indicator	

Bloodstain Pattern Analysis – A Systematic Review

					s of	
					impact	
					height.	
4.	Connolly, et al., 2012 ⁵	Ontario Provincial Police, Forensic Identification Service Unit, Peterborough, Ontario, Canada and Department of Pure & Applied Chemistry, The Centre for Forensic Science, University of Strathclyde, Glasgow, Scotland, United Kingdom	Experimenta l study	•	height. This project examine s the influenc e of alpha angle variation s on the estimatio n of area of origin in impact patterns using direction al analysis. The primary aims of this research were to developi ng a virtual model of a bloodstai n impact pattern to use for alpha angle variation s and determin e the validity of the model through applicati on to a	The virtual model was validated as a conservative indicator, by means of overestimatio n, of the influence of alpha angle inaccuracy on area of origin. The study confirms that with proper stain selection, straight-line trajectories to estimate area of origin are valid and reliable.
					bloodstai	

Bloodstain Pattern Analysis – A Systematic Review

	n impact
	patterns
	• Compute
	• Compute
	r based
	modellin
	g was
	used to
	used to
	create
	two
	virtual
	bloodstai
	n impact
	nattarra
	patterns.
	In the
	creation
	of these
	patterns
	the
	ule
	assumpti
	on of
	straight-
	line
	troiostori
	trajectori
	es was
	utilized
	to allow
	for the
	basic
	trigonom
	etry to
	define
	the
	propertie
	s of the
	virtual
	bloodstai
	ns
	no Erom the
	• From the
	bloodstai
	n
	coordina
	tes and
	the erec
	une area
	of origin
	coordina
	tes the
	alpha (q)
	and
	anu
	gamma
	(γ)
	angles

Bloodstain Pattern Analysis – A Systematic Review

	were
	calculate
	d for
	each
	bloodstai
	n within
	the two
	virtual
	impact
	patterns.
	• And this
	study
	using
	real
	bloodstai
	n
	impact
	fivo
	bioodstai
	n impact
	patterns,
	A–E,
	were
	created
	using
	using
	disease
	free
	sheep
	blood
	heated to
	approxi
	mately
	27.9C to
	57 80 10
	more
	closely
	represent
	human
	blood. A
	sheet of
	smooth
	white
	willie
	paper .
	approxi
	mately
	100 cm
	by 80
	cm was
	fixed to
	the well
	height of
	56 cm

Bloodstain Pattern Analysis – A Systematic Review

	1		1		1
				from the	
				floor as	
				a target	
				surface	
				for the	
				blood	
				droplets.	
			•	It was	
				found	
				that the	
				size of	
				the area	
				of origin	
				influenc	
				es the	
				level of	
				required	
				ın alpha	
				angle	
				estimatio	
				ns.	
				larger	
				areas of	
				origin	
				tolerated	
				larger	
				errors.	
				Practical	
				annlicati	
				ons of	
				the	
				virtual	
				model	
				using	
				real	
				bloodstai	
				n	
				nottorres	
				patients	
				demonst	
				rated	
				that	
				alpha	
				angle	
				measure	
				mente	
				monts	
				may	
				show an	
				inaccura	
				cy of	
				approxi	
				mately	
1 1			i		1

Bloodstain Pattern Analysis – A Systematic Review

	0, 100
	0-12
	within a
	single
	pattern.
	The
	averagin
	σ
	process
	that
	occurs in
	occurs in
	g the
	area of
	origin
	lessens
	the
	influenc
	e of a
	few
	large
	variation
	s. such
	that
	there is
	no
	significa
	significa
	iit ahan aa
	cnange
	in the
	area of
	origin
	estimatio
	n.

B. Discussion

Bloodstain pattern analysis (BPA) is a forensic discipline that involves the interpretation of bloodstains left at a crime scene to reconstruct the events that occurred (Sandwinata, 2018). In this systematic review, we will discuss four papers related to bloodstain analysis, with a focus on the basic concepts of BPA and the use of genetic algorithms to optimize BPA methods. Giovanni, et al. in their paper provides an introduction to the basic concepts of BPA. The paper describes how physical features of blood (Indrawanti & Mandyartha, 2018), such as the shape and size of the blood droplet, can be used to determine the impact angle of blood on a surface. The paper explains how trigonometric principles can be used to calculate the impact angle and how this information can be used to reconstruct the events that occurred. The paper also highlights the importance of proper documentation and preservation of bloodstains at a crime scene. This paper also discusses new methods for solving the BPA optimization problem using genetic algorithms. The paper explains how genetic algorithms can be used to optimize the parameters used in BPA, such as the impact angle and velocity of the blood droplet.

The paper shows that genetic algorithms can significantly improve the accuracy of BPA and reduce the time required for analysis. The paper concludes that genetic algorithms have great potential for improving BPA methods (<u>Vitiello et al., 2016</u>).

The second paper, conducted by Makovicky et al., describes an experiment that aimed to test the concept of trigonometry in BPA with criminal acts. The experiment involved measuring the lengths of trajectory of impact and the height of the blood sprayed upwards from a distance of 1, 3, 5, and 10 meters. The results of the experiment suggest that the concept of trigonometry in BPA with criminal acts may not always be accurate. While the unique values that were calculated were accurate, the other results were not. This suggests that other factors, such as the velocity and angle of the blood droplet, may also affect the final result (Makovický, Horáková, Slavík, Mošna, & Pokorná, 2013).

The third paper describes a study that aimed to investigate the patterns formed by circular bloodstains from drops of blood that hit adjacent surfaces at a 90-degree angle. The patterns containing bloodstains produced by the droplets were analysed by measuring the circular bloodstains within the patterns. The findings suggest that patterns of circular bloodstains cannot be used as direct indicators of impact height. However, combined analysis of their clusters may lead to an indirect determination of impact-to-wall distance and area of origin. The results of the study suggest that while circular bloodstains cannot be used as direct indicators of impact height, thmay still provide valuable information for BPA. The analysis of clusters of circular bloodstains can provide an indirect determination of impact-to-wall distance and area of origin. This highlights the importance of using multiple BPA techniques in combination to obtain the most accurate reconstruction of the events that occurred. The study also emphasizes the need for further research into the limitations and accuracy of BPA methods. While circular bloodstains may not provide direct indicators of impact height, other BPA methods may be able to provide more accurate measurements. It is essential to use multiple methods and compare their results to ensure the accuracy of the reconstruction (Kettner et al., 2015).

Connolly et al., in their paper paper describes a study that aimed to develop a virtual model of a bloodstain impact pattern to use for alpha angle variations and determine the validity of the model through application to real bloodstain impact patterns. Computer-based modelling was used to create two virtual bloodstain impact patterns. In the creation of these patterns, the assumption of straight-line trajectories was utilized to allow for the use of basic trigonometry to define the properties of the virtual bloodstains. Five real bloodstain impact patterns, A–E, were created using disease-free sheep blood. The results of this study demonstrate the usefulness of computer-based modelling in BPA. The virtual model developed in this study provides a conservative indicator of the influence of alpha angle inaccuracy on the area of origin estimation. The study also confirms that with proper stain selection, straight-line trajectories to estimate the area of origin are valid and reliable. However, the study has some limitations. The virtual model only considered straight-line trajectories, which may not be accurate for all bloodstain patterns. Further research is needed to determine the limitations and accuracy of virtual modelling in BPA (Connolly, Illes, & Fraser, 2012).

CLONCUSION

These papers highlight the complexity of BPA and the importance of using a combination of methods to interpret bloodstain patterns accurately. It is essential to

consider the limitations of each method and to use them in combination to obtain a more complete picture of the events that occurred at a crime scene. Further research is needed to refine and improve the methods used in BPA and to develop new approaches to analyzing bloodstain patterns.

BIBLIOGRAFI

- Anggereini, Evita. (2008). Random Amplified Polymorphic DNA (RAPD), suatu metode analisis DNA dalam menjelaskan berbagai fenomena biologi. Biospecies, 1(2).
- Connolly, Candace, Illes, Mike, & Fraser, Jim. (2012). Affect of impact angle variations on area of origin determination in bloodstain pattern analysis. Forensic Science International, 223(1–3), 233–240. <u>https://doi.org/10.1016/j.forsciint.2012.09.009</u>
- Indrawanti, Annisaa Sri, & Mandyartha, Eka Prakarsa. (2018). Deteksi Limfoblas pada Citra Sel Darah Menggunakan Fitur Geometri dan Local Binary Pattern. Jurnal Nasional Teknik Elektro Dan Teknologi Informasi, 7(4), 404–410.
- Jauhani, Muhammad Afiful. (2019). Estimasi Umur Melalui Metilasi DNA Pada Bercak Darah. UNIVERSITAS AIRLANGGA.
- Jauhani, Muhammad Afiful. (2020). Metode Alternatif Identifikasi Forensik: Estimasi Umur Melalui Metilasi Dna Pada Bercak Darah. Scopindo Media Pustaka.
- Kettner, M., Schmidt, A., Windgassen, M., Schmidt, P., Wagner, C., & Ramsthaler, F. (2015). Impact height and wall distance in bloodstain pattern analysis—what patterns of round bloodstains can tell us. International Journal of Legal Medicine, 129, 133–140. <u>https://doi.org/10.1007/s00414-014-1036-7</u>
- Makovický, Peter, Horáková, Petra, Slavík, Petr, Mošna, František, & Pokorná, Olga. (2013). The use of trigonometry in bloodstain analysis. Soud Lek, 58(2), 20–25.
- Sandwinata, Muh Fhajar. (2018). Analisis DNA dalam Kasus Forensik. Teknosains: Media Informasi Sains Dan Teknologi, 12(1). <u>https://doi.org/10.24252/teknosains.v12i1.7863</u>
- Vitiello, Autilia, Di Nunzio, Ciro, Garofano, Luciano, Saliva, Maurizio, Ricci, Pietrantonio, & Acampora, Giovanni. (2016). Bloodstain pattern analysis as optimisation problem. Forensic Science International, 266, e79–e85. <u>https://doi.org/10.1016/j.forsciint.2016.06.022</u>
- Wijayatni, E. F. I. (2010). Rekonstruksi Dalam Proses Penyidikan Guna Mengungkap Kejahatan (Studi kasus Perkara No. Pol.: B/34/VI/2007/Reskrim) di Polresta Tegal.

© 2022 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY SA) license (https://creativecommons.org/licenses/bysa/4.0/).