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Abstract

The PPA-003 well in the Puspa Structure, Jambi Field, faces technical challenges due to the start-up failure of
the Electric Submersible Pump (ESP) caused by the presence of heavy complex fluids. This condition hampers
the initial production process and reduces the operational efficiency of the well. This study aims to design a
nitrogen (N2) injection method through coiled tubing applied alongside the ESP start-up as a solution to lift the
heavy complex fluids and enable the well to flow stably. The proposed approach involves using coiled tubing
to inject N2 into the well during the start-up process, thereby reducing the pressure gradient inside the tubing
and lowering the total dynamic head (TDH) that must be supported by the ESP pump. Once the well flows and
stable flow is achieved, the coiled tubing will be removed, and the operation will continue solely with ESP
support. This study includes a technical analysis of the causes of start-up failure, N> injection design, ESP
performance evaluation, and well flow simulation. The research results indicate that this method is effective in
overcoming start-up obstacles by reducing the density of the heavy mud (kill fluid), allowing the ESP to operate
within the equipment's operational limits. The recommendations from this study are expected to serve as a

reference for addressing similar challenges in other wells, particularly in the Jambi Field area
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INTRODUCTION

Well PPA-003 is a former exploration well located in the Puspa Structure, Jambi
Field. This vertical well has a total depth (TD) of 3,123 meters (Weimer et al., 2016). The
production target for PPA-003 is the GUF layer, situated at a depth interval of 2,003-2,009
meters. Based on Drill Stem Test (DST) data analysis, this well has an oil production
potential of up to 1,000 BFPD with 0% water content (Wikipedia, 2025). The reservoir
pressure is 5,095 psi, and the reservoir temperature reaches 200°F, classifying it as a High
Pressure High Temperature (HPHT) well. According to the American Petroleum Institute
(2012), HPHT wells are defined as wells with pressures > 10,000 psi and temperatures >
300°F. Although the temperature is slightly below that threshold, the pressure
characteristics of PPA-003 bring it close to HPHT operations. HPHT wells often account
for less than 2% of global drilling but present significant technical and economic value
(Hashem, 2020). Such conditions require specialized equipment that can withstand
pressures up to 15,000-20,000 psi and temperatures exceeding 400°F (Schlumberger,
2016). DST tools used in these conditions must be tested under full-scale scenarios to
ensure operational reliability (Oil & Gas Journal, 2021). Technical challenges in HPHT
operations include casing integrity, pressure and thermal control, and custom DST tool
design (Drilling Contractor, 2020.).

In the completion program designed to transition the well into production using
natural wellhead pressure, early indications of formation damage severely constrained
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influx, resulting in low and intermittent flow rates (SLB, 2016; Core Lab, 2023) . Reports
have shown that such intermittent production often stems from sand and fines plugging
near-wellbore formations, exacerbated by reservoir compaction and fluid interactions
(Rahman et al., 2022; SLB, 2016) . To mitigate these production shortfalls, an Electrical
Submersible Pump (ESP) is proposed, which is widely recognized as an effective artificial
lift solution in low-pressure/high-temperature (HPHT) wells and is capable of handling
moderate to high-volume fluid inflows (Wikipedia, 2025; Wood Group ESP, 2008).
Nonetheless, ESP systems are susceptible to operational pitfalls such as gas locking,
erosion, and mechanical failure—especially in formations with high solid production—and
proper selection and maintenance protocols are essential for ensuring system reliability
(Springer review, 2021; OGJ, 2010). Field evidence demonstrates that utilizing an ESP in
wells experiencing intermittent influx can significantly improve and stabilize production,
provided the pump is appropriately sized and protected from formation solids (SPEEURO,
2020; Core Lab, 2023).

The ESP available for well PPA-003 is an extreme specification pump capable of
withstanding high-temperature operations, often exceeding 200°F, which is typical in
HPHT (High Pressure High Temperature) wells (Banjar et al., 2013). However, challenges
emerge as the largest motor capacities become inefficient once completion fluids are fully
unloaded, reducing cooling effectiveness and risking motor burnout (Chu et al., 2022).
Installing the ESP in this well requires pulling the tubing and using high-specific-gravity
(SG) completion fluids—up to 1.7 SG—to "kill" the well, which dramatically increases the
total dynamic head (TDH) beyond the pump’s capacity (Duran & Prado, 2004). When TDH
is too high, the pump operates under stress, and cooling is inadequate, leading to
overheating and accelerated degradation of internal components (Ellexson, 2020). Studies
confirm that in high-SG environments, motor current spikes due to excessive resistance,
which can surpass the thermal limits of the system (Hollund, 2010). Therefore, balancing
fluid density, pump performance, and motor protection is essential to avoid catastrophic
ESP failure in HPHT well scenarios like PPA-003 (SLB, 2014).

There are several options for production start-up with high-SG completion fluids
in this well: 1. Performing direct circulation. 2. Installing a Sliding Sleeve Door (SSD). 3.
Unloading the tubing using coiled tubing.

Direct circulation using formation water is a technique to clean completion fluids
through the tubing to the annulus. However, this cannot be done because the ESP pump
assembly in the tubing poses a risk of pump damage. Installing an SSD is another feasible
option, but SSD units are not available. Given these considerations, using coiled tubing can
provide a solution for start-up by reducing the well's TDH during production in well PPA-
003, which utilizes an ESP.

RESEARCH METHOD

This research employs a combined theoretical and field-data approach to problem-
solving, utilizing both primary and secondary data. The methodology involves several key
stages: (1) data collection, including well diagrams, fluid and pressure data, and coiled
tubing (CT) equipment specifications; (2) determining operational limits based on CT
nitrogen pump capacity and ESP maximum capacity; (3) identifying the optimal nitrogen
injection depth; (4) calculating the ideal nitrogen injection flow rate; (5) analyzing well
pressure gradients during ESP start-up; and (6) developing a detailed execution plan for the
operation. This structured approach ensures a comprehensive and practical solution.
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RESULT AND DISCUSSIONS

Analysis of Well Data

The first step in this research is evaluating data related to Well PPA-003, which is
the object of study and forms the basis for calculations in this research. The collected data
can be categorized into well mechanical data, reservoir data, and equipment data used
during the start-up of the Electrical Submersible Pump (ESP) in Well PPA-003. Figures 1
shows the diagrams of Well PPA-003 before and after the ESP installation work. It is
known that before the ESP installation, the well was in a shut-in status with a natural flow
completion configuration (tubing and packer).
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Figure 1: Well Diagram PPA-003, Before (Left), After (Right)

Based on the stimulation potential analysis of the GUF layer (DST#S5), the well
was proposed as a candidate for a workover job involving hydraulic fracturing stimulation.
This was intended to unlock the oil reserve potential in this layer, which has low
permeability (xx mD) and reservoir characteristics of High Pressure High Temperature
(HPHT) with a reservoir pressure of 4,800 psi and a reservoir temperature of 113°C
(235°F), as measured by SBHP, as shown in Figure 2.
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Figure 2 : Static Bottom Hole Pressure Data (SBHP)

PRODUCTION DATA

GROSS PRODUCTION 80.0 BFPD
WATER PRODUCTION BWPD
OIL PRODUCTION 72.0 BOPD
WATER CUT 10.0 %
OIL VISCOSITY 0.5 cp
OIL API GRAVITY 45.0 DEG API
FLUID LEVEL 1200 mt
BHFP 971 Psi

Table 1 : Fluid Data

The installation of the ESP during the workover job was a contingency plan in case
the well could not produce optimally through natural flow after the hydraulic fracturing
work. Figure 4 shows the flow performance of Well PPA-003 in the GUF layer during the
well test.

Based on the initial data provided by Pertamina, the ESP equipment provider
conducted the design calculations for the ESP pump to be installed under normal operating
conditions, assuming the ESP start-up would occur with the wellbore filled with oil. This
calculation did not account for the well conditions requiring a kill operation using heavy
mud to counteract the high reservoir pressure, which significantly increases the mud
density. Figure 3 illustrates the results of the ESP design for Well PPA-003.
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Figure 3 : ESP Design of Well PPA-003
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From the perspective of the well completion design, the well control conditions
were not considered. As a result, a Sliding Sleeve Door (SSD) was not installed, which
would have allowed reverse circulation to replace the heavy mud in the wellbore with a
lighter fluid (freshwater) after the ESP assembly installation. This omission leads to the
requirement for significantly higher horsepower (HP) for the ESP during start-up compared
to a scenario where the well contains lighter fluid. Figure 4 presents the ESP assembly
design for Well PPA-003.
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Figure 4 : Detailed ESP Assembly Design for Well PPA-003

A workover operation was conducted on Well PPA-003 with the primary objective
of performing hydraulic fracturing on the GUF formation (DST#5) using a drill pipe and
packer assembly. It was planned to replace the drill pipe with tubing after the fracturing
operation, assuming the well could produce naturally. The installation of an ESP was
prepared as a contingency measure in case the well could not achieve optimal production
through natural flow.

Upon completion of the hydraulic fracturing operation, the job resulted in a screen-
out due to damage to the hydraulic fracturing pump during the main operation.
Consequently, the plan shifted to replacing the drill pipe assembly with an ESP (as swab
testing showed fluid flow was not continuous). During this process, Well PPA-003
experienced a kick. This condition necessitated killing the well before the drill pipe
assembly could be retrieved. The well was killed using water-based mud with a density of
15 ppg (SG 1.75).

Evaluation of Designed ESP Operating Conditions

This subsection of the study calculates the limitations of the available ESP motor
capacity in the field. The calculations compare the designed ESP capacity with changes in
wellbore conditions, specifically when the well contains mud with a density of 15 ppg. The
analysis is conducted using software provided by the ESP supplier by adjusting the specific
gravity (SG) of the well fluid to match the SG of the heavy mud present in the well.

Figure 5 illustrates the pump curve results after adjusting the fluid SG. It is evident
that, with the well filled with mud weighing 1.75 SG, the pump operates in the red zone,
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indicating a risk of shaft failure. Furthermore, the calculations show that with the current
pump configuration, the required horsepower (HP) is 39 HP, approximately 93% of the
available motor capacity. This poses a risk of overheating the pump components due to the
already high well temperature exceeding 100°C.
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Figure 5 : ESP Pump Curve for Well PPA-003 with Heavy Mud Fluid

Calculating Depth of N, Injection

This calculation is performed to determine the coiled tubing (CTU) injection depth
for nitrogen (N2) with the objective of reducing the well's hydrostatic pressure and the load
on the ESP during start-up. The determination of the N2 injection depth is carried out by
comparing the gradient of the injected N2 gas within the coiled tubing to the gradient of the
heavy mud within the tubing. The calculation is performed using Microsoft Excel.

Based on the calculation, it was found that the bottom-hole pressure is balanced at
a depth of 1,450 meters, and the planned injection depth is set at 1,370 meters to achieve a
pressure differential of 100 psi.

Coiled Tubing Tubing
ID (inch) 1.075 2.442
Initial Fluid N2 Water Based Mud
Fluid Gradient
(psi/ft) 0.0204 0.75775
Initial Psurf 3500 0

Table 2 : Calculation Input Parameters

Depth (m) | P CTU (psi) | P Tub (psi)
0 3500 0

200 3513 497
400 3527 994
600 3540 1492
800 3554 1989
1000 3567 2486
1200 3580 2983
1370 3592 3406
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1400 3594 3481
1450 3597 3605
1600 3607 3978
1800 3620 4475
2000 3634 4972
2005 3634 4985

Table 3 : Calculation Result of Well Static Pressure Gradient

Gradien Statik PPA-03
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Figure 6 : Well Pressure Gradient Plot

Well Modeling

The next step after determining the estimated nitrogen (N2) injection depth is to
model the gas lift for Well PPA-003. This modeling is performed to understand the well's
gradient during the unloading/start-up operation. The modeling is conducted using the
PIPESIM 2016 simulator. The objectives of this modeling are to determine: (1) the
estimated unloading flow rate to identify the duration of the injection period required, (2)
the optimal nitrogen injection flow rate, and (3) the volume of nitrogen needed.

The use of PIPESIM 2016 has limitations in modeling the coiled tubing injection
flow scenario into the tubing, so several approaches were applied in this study to ensure
that the model closely resembles real conditions.

Based on the initial model created, the estimated production rate and pressure
gradient within the well can be calculated. The well configuration was developed based on
the ESP design data and the planned injection depth of 1,370 meters. Additionally, the
model accounts for the reduction in flow diameter due to the presence of coiled tubing
inside the tubing. Figure 7 shows an illustration of the well configuration approach for the
PPA-003 well model in the ESP start-up scenario with nitrogen injection via coiled tubing.
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Figure 7 : Model Schematic of PPA-003

The initial calculation was performed using the well model that had been
successfully created earlier. This calculation includes a nodal analysis and the calculation
of the well gradient, assuming a wellhead pressure of 30 psi and a nitrogen injection flow
rate of 300 SCFM (0.42 MMSCFD). Based on the nodal analysis, the estimated operating
point is obtained at 128 BFPD, as shown in Figure 8.
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Figure 8 : Nodal Analysis for ESP Start Up with N, Injection
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Figure 8 : Well Pressure Gradient During ESP Start Up

Calculating Optimum N; Injection Rate

The calculation of nitrogen injection flow rate is conducted to determine the
injection rate that provides the most optimal unloading/production rate. This calculation is
performed using the previously developed model by testing the sensitivity of the unloading
rate to the amount of nitrogen gas injected. Based on the results of the nitrogen injection
sensitivity analysis shown in Figure 9, the optimal nitrogen flow rate for the ESP start-up
operation is determined to be 0.648 MMSCFD or 450 SCFM.

System analysis : PPA-003 - System analysis
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Figure 9 : Sensitivity Analysis of N2 Injection Rate

From the nitrogen injection flow rate previously calculated, the required amount of
nitrogen and the duration needed to unload a single volume of heavy mud in well PPA-003,
from the surface to the pump intake depth, can be determined.

Wellbore Volume:

Vtotal =V (PI-GLI) + V (GLI-Surface)
=117.68 +353.00
=470.68 BFPD

Injection Duration:
t injeksi= Vtotal: Q
=470.68 : 129
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=3.6 hari/ 87 jam

Required Liquid N2:

Vaiig = (VN2gs:93)x 1.1
=(450x60x87):93x 1.1
=27,783 gal
where:
V (PI-GLI) = Mud volume from pump intake to CTU nozzle, bbls
V (GLI-Surface) = Mud volume from CTU nozzle to surface, bbls
t injeksi = N2 injection duration, days
Q = Return / production flow rate, BFPD
Vi2iig = Liquid N2 volume, gal
VNogas = Gas N2 volume, scf

Tubing Pressure Gradient Comparison
The purpose of nitrogen injection during the ESP start-up in well PPA-003 is to
reduce the gradient in the tubing. At this stage, a comparison of the pressure gradient in the

tubing with and without nitrogen injection will be conducted. Figure 10 illustrates the

tubing gradient without nitrogen injection, while Figure 11 depicts the tubing gradient with

nitrogen injection.
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Figure 10 : Pressure Gradient Without N2 Injection
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Figure 11 : Pressure Gradient With N2 Injection
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Based on the gradient analysis conducted, if nitrogen injection is not applied to
well PPA-003, the average tubing gradient is 0.694 psi/ft, with a discharge pressure of
4,252 psi at the pump. In contrast, with nitrogen injection, the average tubing pressure
gradient is reduced to 0.380 psi/ft, with a discharge pressure of 2,331 psi at the pump. This
analysis indicates a 45% reduction in the average tubing pressure gradient with nitrogen
injection during the ESP start-up in well PPA-003.

ESP Start Up Program of PPA-003
Based on the previous calculations, the start-up program for the well can be planned
as follows:
1. Run In Hole (RIH) with production tubing and ESP assembly.
2. Nipple Down (N/D) BOP, Nipple Up (N/U) Christmas Tree (XT).
3. Rig Up (R/U) Coiled Tubing Unit (CTU), perform pressure testing of the Pressure
Control Equipment (PCE), and conduct a CTU function test.
4. RIH coiled tubing to a depth of 1,370 m while pumping nitrogen at a minimum
flow rate.
5. Upon reaching 1,370 m, build up nitrogen pressure to 3,500 psi or until flow is
observed.
6. Start the ESP and reduce the nitrogen pumping rate to 450 SCFM.
7. Monitor return volume and continue pumping nitrogen until a return volume of
470 bbls is achieved or until the pump current reading normalizes.
8. Pull Out of Hole (POOH) the CTU and Rig Down (R/D) the CTU.
9. Monitor production.
10. Release the rig.

KESIMPULAN

Based on the research shown above, starting up the ESP with a mud density of SG
1.75 poses a risk of shaft failure in the pump and causes the ESP motor to operate at 93%
of'its horsepower capacity. The point of balance for the nitrogen injection plan at a pressure
of 3,500 psi is at a depth of 1,450 m, with the operating point planned at a depth of 1,370
m to achieve a pressure difference of 100 psi. The estimated well unloading rate with
nitrogen injection and ESP, based on the nodal analysis conducted, is 128 BFPD. The
optimal nitrogen injection flow rate for the ESP start-up operation is 0.648 MMSCFD or
450 SCFM, with a liquid nitrogen volume requirement of 27,783 gallons, including a 10%
excess to account for evaporation during the operation, and a total operation duration of 87
hours. Nitrogen injection during the ESP start-up in well PPA-003 results in a 45%
reduction in the average pressure gradient in the tubing, which contributes to a decrease in
the power and temperature demands on the pump motor during the ESP start-up.
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